7-12 畅通工程之局部最小花费问题 (35 分)
某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。
输入格式:
输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。
输出格式:
输出全省畅通需要的最低成本。
输入样例:
4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0
输出样例:
3
已经修好的路cost当成0就可以了
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 102;
const int inf = 0x3f3f3f3f;
int mp[maxn][maxn], vis[maxn], ans[maxn];//采用邻接矩阵存道路关系(mp)
int n;
void prime()
{
int sum=0;
for (int i = 1; i <= n; i++)//先选第一个点为集合
{
vis[i] = 0;
ans[i] = mp[1][i];//存与第一个点成的集合到相连的点的权值
}
vis[1]=1;
for (int i = 1; i <= n; i++)
{
int min1 = inf,p=0;
for (int j = 1; j <= n; j++)
{
if (!vis[j] && ans[j] < min1)//找出不属于集合,但是相连权值最小的点
{
min1 = ans[j];
p = j;
}
}
if(min1==inf)break; //如果找不到了,就说明已经找完了,这里找的次数是n,如果没有这个条件很容易把inf算入
vis[p] = 1; //标记已经加入集合了
sum+=min1; //加入答案中
for (int j = 1; j <= n; j++)//更新一下于集合相连的点的权值
{
if (!vis[j] && mp[p][j] < ans[j])
{
ans[j] = mp[p][j];
}
}
}
cout << sum << endl;
}
int main()
{
cin>>n;
memset(mp, inf, sizeof(mp));
int st,ed,status,cost;
for(int i=1; i<=n*(n-1)/2; i++)
{
cin>>st>>ed>>cost>>status;
if(status==1)
{
mp[st][ed]=mp[ed][st]=0;
}
else
{
mp[st][ed]=mp[ed][st]=cost;
}
}
prime();
return 0;
}