畅通工程之局部最小花费问题(最小生成树)

7-12 畅通工程之局部最小花费问题 (35 分)

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。

输入格式:

输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。

输出格式:

输出全省畅通需要的最低成本。

输入样例:

4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0

输出样例:

3

 已经修好的路cost当成0就可以了

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 102;
const int inf = 0x3f3f3f3f;
int mp[maxn][maxn], vis[maxn], ans[maxn];//采用邻接矩阵存道路关系(mp)
int n;
void prime()
{
    int sum=0;
    for (int i = 1; i <= n; i++)//先选第一个点为集合
    {
        vis[i] = 0;
        ans[i] = mp[1][i];//存与第一个点成的集合到相连的点的权值
    }
    vis[1]=1;
    for (int i = 1; i <= n; i++)
    {
        int min1 = inf,p=0;
        for (int j = 1; j <= n; j++)
        {
            if (!vis[j] && ans[j] < min1)//找出不属于集合,但是相连权值最小的点
            {
                min1 = ans[j];
                p = j;
            }
        }
        if(min1==inf)break;    //如果找不到了,就说明已经找完了,这里找的次数是n,如果没有这个条件很容易把inf算入
        vis[p] = 1;            //标记已经加入集合了
        sum+=min1;              //加入答案中
        for (int j = 1; j <= n; j++)//更新一下于集合相连的点的权值
        {
            if (!vis[j] && mp[p][j] < ans[j])
            {
                ans[j] = mp[p][j];
            }
        }
    }
    cout << sum << endl;
}
int main()
{
    cin>>n;
    memset(mp, inf, sizeof(mp));
    int st,ed,status,cost;
    for(int i=1; i<=n*(n-1)/2; i++)
    {
        cin>>st>>ed>>cost>>status;
        if(status==1)
        {
            mp[st][ed]=mp[ed][st]=0;
        }
        else
        {
            mp[st][ed]=mp[ed][st]=cost;
        }
    }
    prime();
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值